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Abstract—This article presents a meticulous exploration of 
the Minimum Vertex Cover (MVC) Problem, offering a 
detailed and step-by-step mathematical derivation of the 
Ant Colony Optimization (ACO) algorithm tailored 
expressly for its resolution. The MVC Problem is 
introduced with an emphasis on its significance and 
inherent complexities. The principles of ACO are 
expounded upon, laying the foundation for a 
comprehensive mathematical formulation. Each facet of 
the ACO algorithm, from initialization to pheromone 
updates, solution construction, and the nuanced balance 
between exploration and exploitation, is dissected. 
Through the illustration of a practical example, the article 
showcases the ACO algorithm's application, providing 
insights into its practicality and efficacy in solving specific 
instances of the MVC Problem. This work contributes to 
an enriched understanding of ACO's potential in 
addressing intricate combinatorial optimization 
challenges, serving as a valuable guide for researchers and 
practitioners seeking to implement and explore this 
approach further application in various domains. 
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I. INTRODUCTION 
In the realm of graph theory, the Minimum Vertex Cover 
Problem (MVC) stands as a fundamental challenge with wide-
ranging implications. Take into account an undirected, 
unweighted graph denoted by G = (V, E), where V stands for 
the vertices set, and E denotes the edges set within the graph 
[4-10]. The crux of the Minimum Vertex Cover Problem lies 
in identifying a subset of vertices, drawn from V that 
possesses a unique property: for every edge in E, at least one 
of its two endpoints must belong to this carefully curated 
subset. This process aims to minimize the cardinality of the 
chosen subset, creating what is known as the minimum vertex 
cover set. Formally, a non-empty vertex set S ⊆ V is deemed a 
vertex cover set if each edge in E finds at least one of its 
endpoints within S [10-22]. The quest for the minimum vertex 
cover set within graph G becomes a compelling endeavor, 

seeking to uncover the most efficient and streamlined solution 
within the intricate network of vertices and edges. 
 
Lemma 1: Any graph G= (V, E), and for any subset S ⊆ V, 
two statements are interchangeable: 
• S constitutes the MVC set in G. 
• The complement of S is in V, denoted as V-S, forms the 

independent vertex set in G. 
 
The MVC is known as an NP-complete problem [33], widely 
employed to model diverse real-life scenarios across various 
domains such as circuit design, telecommunications, network 
flow, and medical science, including applications in the 
detection of cancer cells. This intricate problem, renowned for 
its computational complexity, plays a pivotal role in decision-
making processes where the objective is to determine the 
smallest subset of vertices in a graph. The MVC's versatility is 
evident in its application to practical challenges, making it a 
valuable tool for addressing complex issues in fields ranging 
from technology and communication to healthcare [22-32]. As 
an NP-complete problem, MVC encapsulates the inherent 
difficulty of finding optimal solutions within a reasonable 
timeframe, adding a layer of complexity that mirrors the 
intricacies of real-world problem-solving [34, 35].  
 
A. Application of ACO to the MVC 
The structure of the Minimum Vertex Cover (MVC) problem 
diverges from other problems previously tackled by ACO in 
the existing literature [1-3, 22]. In contrast to many ACO-
solved problems, where solutions often manifest as ordered or 
unordered subsets of edges [8], MVC poses a distinctive 
challenge. The solution space for MVC comprises unordered 
subsets of vertices, each derived by individual ants during 
each cycle of the algorithm. This distinction introduces an 
added layer of complexity, necessitating an innovative 
approach in representing MVC within a graph structure. 
Furthermore, the development of local heuristics for the state 
transition rule and the subsequent update of the pheromone 
trail become notably intricate. The unique characteristics of 
MVC demand a tailored adaptation of ACO, marking this 
exploration as an intriguing endeavor in the intersection of 
graph theory and optimization algorithms. 
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B. Approximation algorithm for the MVC Problem [32] 
Input: Graph G = (V,E) 
 
Output: A vertex cover C for G with size no more than twice 
the size of the optimal vertex cover. 
begin 
S← ∅ 
while E is not empty 
Randomly select an edge (i, j) 
Add i and j to S 
Eliminate all edges connected to either vertex i or vertex j 
from the edge set E. 
end 
return S 
end 

II. GRAPH REPRESENTATION OF MVC PROBLEM 
Consider G=(V,E) as the graph representing the Minimum 
Vertex Cover (MVC) problem, with the solution to this 
instance being an unordered subset of vertices denoted as S ⊆ 
V [5-7]. To facilitate the application of the ACO Algorithm, to 
create a complete graph Gc= (V, Ec) as the complement of G. 
Within this complete graph, the ACO Algorithm [1-3] guides 
ants to choose the next vertex randomly. The connectivity 
function for each path in the Figure 1 is precisely defined to 
regulate the exploration process.  
 
Ck:Ec→ {0,1}for each edge (i, j) as: 
 

Ck(i, j) = �
1, (i, j) ∈ E
0, (i, j) ∉ Ec − E (1) 

 
The adjacent value for each path, a clear distinction is 
established between the edges in E(G) and those in E(Gc) - 
E(G). Simultaneously, this connected value serves as the 
pheromone. For any given ant, denoted as ‘k’, initiating the 
exploration from any vertex, that ensure the ant k avoids 
selecting vertices it has already reached by updating the 
adjacent value of the edge (i, j) upon reaching the point j. 
Specifically, C (i, j) is set to 0 for j ∈ S, where S represents an 
arbitrarily chosen set of initial points for ants. This 
precautionary measure is essential to maintain the integrity of 
the exploration process and prevent ants from revisiting 
previously explored vertices.  
 
A. Updating Transition Formula 
when one of the vertices is visited by an ant, the cost of the 
edge in E is set to 0 using rule, denoted as Ck(i, j)=0, if edge(i, 
j)∈E and either vertex i or j is visited by ant K. Subsequently, 
the connectivity value of the edge undergoes further updating, 
following the specified protocol [5]: C(i,j) = 1/n, if edge (i, 
j)∈E and either vertex i or j is visited by ant K, where n 
represents the number of vertices in the graph. The maximum 

cost, denoted as:Cjk, signifies the higher preference for 
selecting vertex j. Before entering the subsequent cycle, a reset 
the cost for all edges is imperative using equation (1) to 
reinstate the cost information of each path. Subsequently, the 
total values for the paths incident with each vertex in graph G 
are recalculated. 
 
B. State transition rule 
In most problems solved by ACO, solutions are derived from 
the power set of the edge set. However, as the solution to the 
MVC is obtained through subsets of vertices, each vertex is 
assigned a maximum value. Consequently, the state transition 
probability for ant k is defined to determine the likelihood of 
selecting the next vertex using probability: 

Pjk=
τα 𝔫𝔫jk

β

∑ τα 𝔫𝔫jk
β

j∈Si
     (2) 

 
Where Sk  represents the set of vertices accessible to ant k, τα 
and 𝔫𝔫jk

β  denote the global pheromone updating factor and the 
value of variable denoted as 𝔫𝔫jk. The variable  𝔫𝔫jk evaluates 
the local preference for vertex j for ant k according to the 
heuristic function [5]. 
 
 𝔫𝔫jk=

∑ C(i,j)(i,j)∈Ec
W(j)

     (3) 
 
Here,  𝔫𝔫jk represents the count of edges not covered by ant k 
that are currently linked to vertex j, divided by the weight of 
vertex j. In this context, it is assumed that the vertex 'l' has the 
highest value. Subsequently, the state transition probability of 
ant k is defined and utilized to determine the selection of the 
next vertex. 
 
Pik = �1 , i = l

o, i ≠ l     (4) 

 
For any given vertex 'i', if Cik = 0, it indicates that the 
connected value for each edge becomes zero in graph GC, 
when at least one endpoint for each edge has been traversed by 
an ant in graph  
G. This condition acts as a termination criterion for the ant 
colony optimization algorithm. In contrast, when GC is non-
zero, the connected values undergo an update, and the process 
of selecting the next vertex is sustained. This iterative 
operation continues until the connected value for every vertex 
reaches zero, culminating in the establishment of a distinct 
vertex cover set Sk. 
 
C. Pheromone updating rule 
The update of the connectivity value, denoted as C (i, j), for an 
edge in E occurs when one of its vertices has been visited by a 
specific ant, say ant k, as outlined in the following manner: C 
(i, j) = 1/n, if edge (i, j) ∈ E and either vertex i or j has been 
visited by ant k, where n represents the number of graph 
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vertices (∣V∣). Importantly, at the conclusion of each cycle, the 
pheromone left on the vertices of the presently best solution, 
denoted as S, is addressed. To achieve this without 
redundancy, for each vertex i ∈ S, the pheromone is updated 
following the global updating rule [1-3]:  τi= (1-ρ)τi 
 
Where 
∆τi=

1
∣sk∣

      and ρ ∈ (0,1), represents a parameter that emulates 
the rate of pheromone intensity evaporation. 
So the updated pheromone is:    τi=τi+ρ∆τi 
 
D. Stopping Criterion 
The ACO's termination criterion can materialize as a 
maximum iteration count, a fixed CPU time limit, or a 
specified number of consecutive iterations yielding the 
optimal algorithmic improvement. This paper takes a distinct 
route, opting for a predefined number of iterations where no 
progress in the solution is observed. 
 

III. ALGORITHM OF ACO FOR MVC 
Step-1: Initialization parameters: Utilizing the following 
formula to assign the adjacent value for each path in the 
graph:Gc. 
 

C(i, j) = �
1, (i, j) ∈ E
0, (i, j) ∉ Ec − E 

 
andSk=φ,i=1,k=1, Choose a vertices randomly as the starting 
points and position the ant on the graph. 
 
Step-2: Apply function C(i, j)=0  to update the adjacent values 
of all paths incident with vertex i and compute Cj  k    =  1

n
(j∈

V).If Cj  k     =  0, we get the vertex cover set Sk. Else if   k<H, 
let k = k +1 ,i = i +1, then repeat Step 1.  
 else 
  ifk=H, execute Step 4.  
   else execute  Step3. 
 
Step-3: Calculate Cj  k    , if  Pik =1 , Find vertex has the 
maximum value,  so  Sk = Sk  ∪  {ui }, go to  step-2. 
 
Step-4: Let S= min{∣ S1 ∣, … … … … . , ∣ SH ∣},If S constitutes 
an approximate minimum visited vertex set of graph. 
 
A. The Time Complexity of Algorithm  
Step-1: Involves n (n-1)/2 for constructing graph Gc. 
Step-2: necessitates n-1 for updating the connected values of 
all paths adjacent to vertex i. 
Step-3: required n-1 steps to computing Cik 
Step-4: Execute H-1 times for getting MVC set. 
 

Therefore, the algorithm's time complexity can be expressed 
as: O (2n2+2n-2) = O (𝑛𝑛2) 
 
B. Example of the ACO in MVC  
We utilize the graph G depicted in Fig. 1, to exemplify the 
algorithm's concrete implementation, leading to the derivation 
of an approximate MVC for graph G. 
 

 
Figure 1 Graph Representation of MVC problems with 6-

vertices 
 
C.  Initialization of parameters 
Before initiating the step-by-step mathematical derivation of 
the ACO for solving the MVC Problem, it is crucial to 
initialize key parameters: 𝛼𝛼 = 1,𝛽𝛽 = 1,𝜌𝜌 = 0 and 

𝜏𝜏𝑖𝑖𝑖𝑖=�
1, (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸
0, (𝑖𝑖, 𝑗𝑗) ∉ 𝐸𝐸 

 
D. A Step by Step Illustration 
Step-1 (ant-1)(iteration-1) 
Assuming vertex A as the starting point for ant 1 in the 
exploration of the visited vertex set, the connected values for 
each path in graph G are as:  follows: 
C(A,B)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C
(D,F)=C(E,F)=1 and set other paths have the value zero. 
Initialized 𝑆𝑆1= {A}. 
 
Step-2 Assign the values of all paths to be displayed at vertex 
A be 0, and then find 𝐶𝐶𝑖𝑖1 ,  
𝐶𝐶𝐵𝐵1=𝐶𝐶𝐶𝐶1=𝐶𝐶𝐷𝐷1=1 

6
+1+1=2.18, 𝐶𝐶𝐹𝐹1=3 

 
Step-3: 𝐶𝐶𝐹𝐹1=3 is the more then 𝑆𝑆1= {A,F},repeat step 2. 
 
Step-2: Assign the values of all paths to be displayed at vertex 
F be 0, and then compute  𝐶𝐶𝑖𝑖1 ,  
 
𝐶𝐶𝐵𝐵1=𝐶𝐶𝐷𝐷1=1 

5
+1=1.02,𝐶𝐶𝐸𝐸1 =1 

5
= 0.2,𝐶𝐶𝐶𝐶1= 1+1=2 repeat step 3 

 
Step-3: 𝐶𝐶𝑐𝑐1=2 is the more then 𝑆𝑆1={A,F,C},goto step 2. 
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Step-4: Revise the values for all adjacent paths, and 
𝐶𝐶𝐴𝐴1=𝐶𝐶𝐵𝐵1=𝐶𝐶𝑐𝑐1=𝐶𝐶𝐷𝐷1=𝐶𝐶𝐸𝐸1=𝐶𝐶𝐹𝐹1=0 
So the terminate it steps. Result is S1 = {A, F, C}. 
 
Step-1 (ant-2)(iteration-2) 
Assuming vertex B serves as the starting point for ant 2 in 
exploring the visited vertex set, the for each adjacent path in 
graph Gc are as follows:  
C(B,A)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C
(D,F)=C(E,F)=1 and set other paths have the value zero . 
Initialized 𝑆𝑆2={B}.  
 
Step-2: Set all adjacent paths incident with vertex B to 0, and 
subsequently calculate 𝐶𝐶𝑖𝑖2 : 
𝐶𝐶𝐴𝐴2=1 

6
+ 1 + 1 + 1 = 3.16, 𝐶𝐶𝐶𝐶2=𝐶𝐶𝐹𝐹2=1 

6
+1+1=2.18, 

𝐶𝐶𝐸𝐸1=1+1=2,𝐶𝐶𝐸𝐸1=1+1+1=3, 
Step-3: 𝐶𝐶𝐴𝐴2=3.16 is the maximum then 𝑆𝑆2={B,A},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex A to 0, and 
subsequently calculate:𝐶𝐶𝑖𝑖2 ,𝐶𝐶𝐸𝐸1=𝐶𝐶𝐶𝐶1=1 

5
+1=1.02,𝐶𝐶𝐷𝐷1 =1+1+1 =

3,𝐶𝐶𝐹𝐹1= 1+1=2 goto step 3 
 
Step-3: 𝐶𝐶𝐷𝐷2=3 is the more then 𝑆𝑆2={B,A,D},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex D to 0, and 
subsequently calculate:𝐶𝐶𝑖𝑖2,𝐶𝐶𝐸𝐸1= 1 ,𝐶𝐶𝐶𝐶1=0,,𝐶𝐶𝐹𝐹1= 1+1 

4
=1.25 goto 

step 3 
 
Step-3: 𝐶𝐶𝐹𝐹2=1.25 is the more then 𝑆𝑆2={B,A,D,F},goto step 2. 
 
Step-4: Revise all adjacent paths, and 
𝐶𝐶𝐴𝐴2=𝐶𝐶𝐵𝐵2=𝐶𝐶𝑐𝑐2=𝐶𝐶𝐷𝐷2=𝐶𝐶𝐸𝐸2=𝐶𝐶𝐹𝐹2=0 
So the terminate it steps. Output is S2 = {B, A, D, F}. 
 
Step-1 (ant-3)(iteration-3) 
Assuming vertex C serves as the starting point for ant 3 in 
exploring the visited vertex set, the for each adjacent path in 
graph Gc are as follows:  
C(A,B)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C
(D,F)=C(E,F)=1 and other edges have the value zero. Let 
𝑆𝑆3={C}. 
 
Step-2: Set all adjacent paths incident with vertex C to 0, and 
subsequently calculate𝐶𝐶𝑖𝑖3 ,    𝐶𝐶𝐴𝐴3=1 

6
+1+1+1=3.16, 

𝐶𝐶𝐵𝐵3=𝐶𝐶𝐷𝐷1=1 
6
+1+1=2.18, 𝐶𝐶𝐹𝐹3=3,𝐶𝐶𝐸𝐸3=2 

 
Step-3:𝐶𝐶𝐴𝐴3=3.16 is the more then 𝑆𝑆3={C,A},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex A to 0, and 
subsequently calculate, 𝐶𝐶𝑖𝑖3 ,  𝐶𝐶𝐵𝐵3=𝐶𝐶𝐷𝐷3=𝐶𝐶𝐸𝐸3 =  1 

5
+1=1.02,𝐶𝐶𝐹𝐹3= 

1+1+1=3 goto step 3 
 

Step-3: 𝐶𝐶𝐹𝐹3=3 is the more then 𝑆𝑆3={C,A,F},goto step 2. 
 
Step-4: Revise all adjacent paths, and 
𝐶𝐶𝐴𝐴3=𝐶𝐶𝐵𝐵3=𝐶𝐶𝑐𝑐3=𝐶𝐶𝐷𝐷3=𝐶𝐶𝐸𝐸3=𝐶𝐶𝐹𝐹3=0 
So the terminate it steps. Output is S3 = {C, A, F}. 
 
Step-1 (ant-4)(iteration-4) 
Assuming vertex D as the starting point for ant 4 in the 
exploration of the vertex cover set, the connected values for 
each edge in graph Gc are as follows: 
C(B,A)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C
(D,F)=C(E,F)=1 and other edges have the value zero. Let 
𝑆𝑆4={D}. 
 
Step-2: Set all adjacent paths incident with vertex B to 0, and 
subsequently calculate𝐶𝐶𝑖𝑖2 ,  
𝐶𝐶𝐴𝐴4=1 

6
+ 1 + 1 + 1 = 3.16, 𝐶𝐶𝐶𝐶4=𝐶𝐶𝐹𝐹4=1 

6
+1+1=2.18, 

𝐶𝐶𝐸𝐸4=1+1=2,𝐶𝐶𝐹𝐹4=1+1+1=3, 
 
Step-3: 𝐶𝐶𝐴𝐴4=3.16 is the more then 𝑆𝑆4={D,A},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex D to 0, and 
subsequently calculate𝐶𝐶𝑖𝑖4 ,  
 
𝐶𝐶𝐸𝐸4=𝐶𝐶𝐶𝐶4=1 

5
+1=1.02,𝐶𝐶𝐵𝐵4 =1

5
+1+1 = 2.2,𝐶𝐶𝐹𝐹4= 1+1=2 goto step 3 

 
Step-3: 𝐶𝐶𝐵𝐵4=2.2 is the more then 𝑆𝑆4={D,A,B},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex B to 0, and 
subsequently calculate𝐶𝐶𝑖𝑖4 ,  
 
𝐶𝐶𝐸𝐸4= 1 ,𝐶𝐶𝐶𝐶1=1

4
,,𝐶𝐶𝐹𝐹1= 1+1 

4
=1.25 goto step 3 

 
Step-3: 𝐶𝐶𝐹𝐹4=1.25 is the more then 𝑆𝑆4={D,A,B,F},goto step 2. 
 
Step-4: Revise the connected values for all edges, and 
𝐶𝐶𝐴𝐴4=𝐶𝐶𝐵𝐵4=𝐶𝐶𝑐𝑐41=𝐶𝐶𝐷𝐷14=𝐶𝐶𝐸𝐸4=𝐶𝐶𝐹𝐹4=0 
So the terminate it steps. Output is S4 = {D, A, B, F}. 
 
Step-1 (ant-5)(iteration-5) 
Assuming vertex E serves as the starting point for ant 5 in 
exploring the visited vertex set, the for each adjacent path in 
graph Gc are as follows:  
C(B,A)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C
(D,F)=C(E,F)=1 and other edges have the value zero. Let 
𝑆𝑆5={E}. 
 
Step-2: Set all adjacent paths incident with vertex B to 0, and 
subsequently calculate 𝐶𝐶𝑖𝑖2 ,  
𝐶𝐶𝐴𝐴5=1 

6
+ 1 + 1 + 1 = 3.16, 𝐶𝐶𝐵𝐵5 =  𝐶𝐶𝐶𝐶5=𝐶𝐶𝐷𝐷5=1+1+1=3, 

𝐶𝐶𝐹𝐹5=1
6
+1+1=2.16, 
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Step-3: 𝐶𝐶𝐴𝐴5=3.16 is the more then 𝑆𝑆5={E,A},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex D to 0, and 
subsequently calculate𝐶𝐶𝑖𝑖5 ,  
 
𝐶𝐶𝐵𝐵5=𝐶𝐶𝐶𝐶5=𝐶𝐶𝐷𝐷5 =1

5
+1+1 = 2.2,𝐶𝐶𝐹𝐹4= 1+1=2 goto step 3 

 
Step-3: 𝐶𝐶𝐵𝐵5=2.2 is the more then 𝑆𝑆5= {E, A, B},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex B to 0, and 
subsequently calculate, Ci5 ,  
 
CD5= 1 + 1 = 2 , CC5=CF5= 1+1 

4
=1.25 goto step 3 

 
Step-3: CD5=2 is the more then S5={E,A,B,D},goto step 2. 
 
Step-4: Revise the connected values for all edges, and  
CA5=CB5=Cc5=CD5=CE5=CF5=0 
So the terminate it steps. Output is S5 = {E,A,B,D}. 
 
Step-1 (ant-6) (iteration-6) 
Assuming vertex F serves as the starting point for ant 6 in 
exploring the visited vertex set, the for each adjacent path in 
graph Gc are as follows:  
C(A,B)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C
(D,F)=C(E,F)=1 and other edges have the value zero. Let 
S6={F}. 
 
Step-2: Set all adjacent paths incident with vertex F to 0, and 
subsequently calculateCi6 ,  
CB6=CD6=1 

6
+1+1=2.18, CA6=4,CC6=1+1+1=3 

 
Step-3: CA6=4 is the more then S6={F,A},goto step 2. 
 
Step-2: Set all adjacent paths incident with vertex A to 0, and 
subsequently calculateCi6 ,          
CB1=CD1=1 

5
+1=1.02,CE1  =1 

5
= 0.2, CC1=1

5
+ 1+1=2.2 goto step 3 

 
Step-3: Cc1=2.2 is the more then S6={F,A,C},goto step 2. 
 
Step-4: Revise the connected values for all edges, and 
CA6=CB6=Cc6=CD6=CE6=CF6=0 
So the terminate it steps. Output is S6 = {F, A, C}. 
 

Table 1 Results of ACO-MVC Computation 
Starting point Ant MVC  
‘A’ 1 S1={‘A’, ‘F’, ‘C’}, 
‘B’ 2 S2={‘B’, ‘A’, ‘D’, ‘F’} 
‘C’ 3 S3 = {‘C’, ‘A’, ‘F’} 
‘D’ 4 S4 = {‘D’, ‘A’, ‘B’, ‘F’}. 
‘E’ 5 S5 = {‘E’, ‘A’, ‘B’, ‘D’}. 
‘F’ 6 S6 = {‘F’, ‘A’, ‘C’}. 

 
We have S1=S3 = S6 = {A, F, C} and all of them are also the 
MVC sets. So, 
 S=min {∣ S1 ∣, … … … … . , ∣ S6 ∣},ie.∣ S1 ∣=∣ S3 ∣=∣ S6 ∣=3 
 

IV. CONCLUSION 
In conclusion, this article has meticulously unveiled a step-by-
step mathematical derivation of an ACO algorithm specifically 
designed for the MVC Problem. Demonstrating its 
effectiveness through the identification of optimal solutions in 
various vertex sets, the derived ACO algorithm showcases 
promise in addressing the computational complexities inherent 
in MVC. The carefully defined state transition probability 
empowers the algorithm to intelligently explore vertex cover 
sets, as illustrated in a practical example, highlighting its 
feasibility and accessibility. Future work could focus on 
refining the algorithm, exploring additional heuristics, and 
investigating its adaptability to dynamic problem instances. 
Moreover, the integration of parallel computing or hybrid 
approaches and comparative studies with alternative 
optimization techniques would contribute to a deeper 
understanding of the algorithm's capabilities and limitations, 
fostering advancements in solving intricate combinatorial 
optimization challenges. 
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